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1
SYSTEMS AND METHODS FOR
GENERATING A HIGH-LEVEL VISUAL
VOCABULARY

BACKGROUND

1. Field

The present disclosure generally relates to forming rela-
tionships between image features.

2. Background

Multiple features are sometimes used to recognize objects
in images. For example, SIFT features, SURF features, ISA
features, CHoG features, GLOH features, DoH features,
FAST features and PCBR features have been used to describe
images. Detected features may be used to compare images or
to identify objects in images.

SUMMARY

In one embodiment, a method comprises generating inter-
visual-word relationships between a plurality of visual words
based on visual word-label relationships, mapping the visual
words to a vector space based on the inter-visual word rela-
tionships, and generating high-level visual words in the vec-
tor space.

In one embodiment, a device comprises one or more com-
puter-readable media configured to store instructions and one
or more processors configured to cause the device to generate
mid-level visual words based on a plurality of low-level fea-
tures that were extracted from images, generate inter-mid-
level visual word relationships based on mid-level visual
word-label relationships, and map the mid-level visual words
to a vector space based on the inter-mid-level visual-word
relationships.

In one embodiment, one or more computer-readable media
store instructions that, when executed by one or more com-
puting devices, cause the one or more computing devices to
perform operations comprising generating initial inter-vi-
sual-word relationships between a plurality of visual words
based on visual word-label relationships, mapping the visual
words to a vector space based on the inter-visual-word rela-
tionships; and generating high-level visual words in the vec-
tor space based on respective positions of the visual words in
the vector space.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates an example embodiment of the flow of
operations in a feature fusion system.

FIG. 2 illustrates an example embodiment of a method for
generating high-level visual words.

FIG. 3 illustrates example embodiments of mid-level
visual words in the low-level feature space.

FIG. 4A illustrates an example embodiment of relation-
ships among mid-level visual words and labels.

FIG. 4B illustrates an example embodiment of a co-occur-
rence matrix of mid-level visual words and labels.

FIG. 5 illustrates an example embodiment of the mapping
of relationships from a graph to a vector space.

FIG. 6 illustrates an example embodiment of a method for
generating high-level visual words.

FIG. 7 illustrates an example embodiment of the flow of
operations in a feature fusion system.

FIG. 8 illustrates an example embodiment of a method for
generating high-level visual words.

FIG. 9 illustrates an example embodiment of a set of vector
spaces and importance weights.
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FIG. 10 illustrates an example embodiment of a method for
generating high-level visual words.

FIG. 11 illustrates an example embodiment of a system for
generating high-level visual words.

FIG. 12A illustrates an example embodiment of a system
for generating high-level visual words.

FIG. 12B illustrates an example embodiment of a system
for generating high-level visual words.

DESCRIPTION

The following disclosure describes certain explanatory
embodiments. Additionally, the explanatory embodiments
may include several novel features, and a particular feature
may not be essential to practice the systems and methods
described herein.

FIG. 1 illustrates an example embodiment of the flow of
operations in a feature fusion system. The system includes
one or more computing devices (e.g., desktops, laptops, tab-
lets, servers, phones, PDAs), although only some of the com-
ponents of the computing devices are shown in FIG. 1 in order
to explain the operations. The system includes a feature
extraction module 110, which receives one or more images
101 and extracts low-level features 103 from the one or more
images 101. Modules include logic, computer-readable data,
or computer-executable instructions, and may be imple-
mented in software (e.g., Assembly, C, C++, C#, Java,
BASIC, Perl, Visual Basic), firmware, or hardware. In some
embodiments, the system includes additional or fewer mod-
ules, the modules are combined into fewer modules, or the
modules are divided into more modules. Though the comput-
ing device or computing devices that execute the instructions
in a module actually perform the operations, for purposes of
description a module may be described as performing one or
more operations.

The features 103 are input to a visual-word-generation
module 130. The visual-word-generation module 130 gener-
ates mid-level visual words 107 (also referred to herein at
“MVWs”) based on the low-level features 103, for example
by clustering the low-level features in a low-level-features
space. In the native low-level-feature space, the positions of
the low-level features depend only on the respective visual
appearances of the low-level features, which are described by
the native attributes of the low-level features. Thus, clustering
the low-level features in the low-level-feature space based
only on the respective positions of the low-level features in
the low-level-feature space produces clusters that are based
only on the visual similarity of the low-level features. Also,
the images 101 are input to an image-categorization module
120, which determines the respective labels (e.g., categories,
tags, semantic labels) 105 that are associated with the images
101.

The mid-level visual words 107 and the labels 105 are input
to a visual-word relationship modeling module 140, which
generates a model that defines inter-visual-word relationships
and visual-word-label relationships. In some embodiments,
the representation is a graph (e.g., a co-occurrence graph) that
defines relationships among the mid-level features 107 and
the labels 105 or the images 101. For example, the edge values
of the graph may represent the relationships (e.g., co-occur-
rences) between the nodes (e.g., mid-level visual words,
labels, images) in the graph. In the embodiment shown, the
representation is a matrix.

The representation of the relationships (e.g., the graph, the
matrix) is then obtained by the relationship mapping module
150, which maps the mid-level visual words 107 to a vector
space 151 (e.g., a metric space (for example, a Euclidean
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space), a lower-dimensional vector space, a vector space
defined by orthogonal axes, an embedded vector space) based
on the relationships, for example by diffusion mapping. The
relationships (e.g., co-occurrences in images, co-occurrences
in labels, correlations among labels, correlations among
images) between the mid-level visual words 107 are repre-
sented as positions in the vector space 151 (e.g., Euclidean
distances between the mid-level visual words). For example,
the Euclidean distances between the mid-level visual words
may be directly proportional to the co-occurrences of the
mid-level visual words, where a shorter distance indicates a
greater co-occurrence. Thus, the relationships in the repre-
sentation of the relationships (e.g., the graph, the matrix) may
be converted to and represented as distances in the vector
space 151. Also, groups of mid-level visual words 107 may be
fused to generate high-level visual words 109. Furthermore,
in embodiments where the distances between the MVWs
represent (e.g., are proportional to) the defined relationships
between the MV Ws in the graph (or other relationship repre-
sentation), clustering the MV Ws in the vector space 151 may
have the effect of clustering the MV Ws based on their defined
relationships in the graph. Thus, clusters of MV Ws in the
vector space 151 may be based on their defined relationships,
rather than on only visual similarity.

FIG. 2 illustrates an example embodiment of a method for
generating high-level visual words. The blocks of'this method
and the other methods described herein may be performed by
one or more computing devices, for example the systems and
devices described herein. Also, other embodiments of this
method and the other methods described herein may omit
blocks, add blocks, change the order of the blocks, combine
blocks, or divide blocks into more blocks.

The flow starts in block 200, where low-level features are
extracted from one or more images. For example, some
embodiments extract the color-SIFT features from images to
obtain the low-level features. The SIFT descriptor basically
characterizes the local edge distribution around key points.
Extension to color considers color gradients, rather than
intensity gradients, and puts color gradients into the Gaussian
derivative framework. In color SIFT, the first vector of 128
bytes in the descriptor carries all intensity related informa-
tion, whereas the second and third vectors contain the
orthogonal chromatic information. Hence, intensity, shadow,
and shading effects are present in the intensity vector,
whereas the pure chromatic information is carried by the
additional color vectors. The low-level color SIFT features
are denoted as xWeR 12543,

Next, in block 210, MVWs F are generated based on the
low-level features. For example, some embodiments use
k-means to learn the codebook centers FeR '2%%* from the
low-level features X to basically cluster the low-level features
with similar appearance into groups, and a group is desig-
nated as a respective MVW F,. If the codebook centers are
later used as nodes to construct a graph, this reduces the
number of nodes and the computational complexity (e.g.,
computing the co-occurrence matrix S and its Eigen-decom-
position).

The flow then proceeds to block 220, wherein inter-MVW
relationships are generated based on the MVWs F and on
labels associated with the images. For example, some
embodiments statistically capture the similarity (e.g., co-oc-
currence) between MV Ws F using the label information of
the images. A word-label (e.g., MV W-label) similarity matrix
S may be generated by counting the frequency of each
MVW’s appearance with each label, denoted as (i, q).
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Furthermore, through normalizing f(i, q) by the corre-
sponding row sum, the joint probability that MVW F, appears
with label q, denoted as p(i, q), can be obtained:

fli, g
A
4

®

pli, @) oc plilg) =

Each MVW F, can be further described by its distribution
over all the labels. The similarity matrix S, which measures
the sharing of information between two MVWs (F,, F)), can
be computed by comparing their distributions using KL
divergence:

pli q) @

L@

S(FillFy) = KL(PiIPj) = Z pli, g)log
geN

To force the similarity matrix S to be symmetric, the aver-
age of the KL divergence between each pair of MV Ws can be
computed:

S, Fyy=S(F 3 ) =AIKL(P P +KL(PP)).

Once the similarity matrix S is obtained, a graph G (V, E)
can be generated, where V is the node (e.g., MVW, label) and
E is the edge (e.g., the edge weight from the similarity matrix
S).
Next, in block 230, the MV Ws F are mapped to a vector
space based on the inter-MVW relationships. For example,
the pairwise similarities can be interpreted as edge flows in a
Markov random walk on the graph. Hence, the similarity
between two nodes can be analogous to the transition prob-
ability on the edge. By conducting the random walk for t
number of transition steps, the transition probability can be
propagated from one node to another through others. The
diftusion distance D between two nodes can be defined based
on the random walk. Using spectral analysis of a transition
matrix P (e.g., a Markov transition matrix), the d dominant
eigenvectors can be found. The d dominant eigenvectors can
be used as the coordinates of the vector space, and the MV W
F (or other nodes) can be projected into the vector space while
preserving the diffusion distances of the nodes.

For example, a normalized edge weight can be treated as
the transition probability between two nodes, and conse-
quently, a transition matrix P:P(l):{pij(l)} can be constructed
by normalizing a weight matrix W such that its rows add up to
1:

pij=Wij/ZWik-
&

The transition matrix P can be considered to be the transi-
tion kernel of the Markov chain on the graph G, which gov-
erns the evolution of the chain on the space. In other words,
pij(l) defines the transition probability from node i to j in a
single transition step, and the transition matrix P defines the
entire Markov chain. P™" indicates the first-order neighbor-
hood geometry of the data. The random walk may be run
forward in time to capture information about larger neighbor-
hoods by taking powers of the transition matrix P. The for-
ward-probability matrix for t number of transition steps P% is
given by P, The number of transition steps t could be any
real number (e.g., 1, 2, 3, 3.75). The entries in P® represent
the probability of going from i to j in t transition steps.
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In such embodiments, a cluster is a region in which the
probability of the Markov chain escaping the region is low.
The higher the value oft (i.e., the more transition steps), the
higher the likelihood of diffusing to further away points. The
transition matrix P® thus reflects the intrinsic structure of the
data set, defined via the connectivity of the graph G, in a
diffusion process, and the diffusion steps (e.g., the number of
transition steps t) play the role of a scale parameter in the data
analysis. Generally, fewer diffusion steps means higher data
resolution, or finer scale structure representation, and vice
versa.

The diffusion distance D between two nodes (e.g., MV Ws,
low-level features, labels, images) on the graph G can be
defined using the random-walk forward probabilities pij(’) to

relate the spectral properties of a Markov chain (e.g., its !

transition matrix, eigenvalues, and eigenvectors) to the under-
lying structure of the data. The diffusion distance D repre-
sents the similarity between two data points, z, and 7, by
comparing the likelihoods that a Markov chain transits from

each of them to the same node z,, by following any arbitrary 2

path of length t transition steps. The diffusion distance D
between two such data points can be calculated according to

2
- p

) 2 —
Dz, 2] = o)

where ¢(z q)(o) is the stationary distribution that measures the
density of the MV Ws (or other nodes). It is defined according
to ¢(z q)(o):dq/Z ,d;, where d, is the degree of node z,,, defined
by d =Zp,,. A pair of MV Ws with a high forward-transition
probability has a small diffusion distance. In other words, the
diftusion distance D will be small between two MV Ws if the
MVWs are connected by many t-length paths in the graph G.
This notion of proximity of MV Ws in the graph G reflects the
intrinsic structure of the set in terms of connectivity of the
MVWs in a diffusion process. Because the diffusion distance
D may be computed using all (or nearly all) possible paths
through the graph, compared to the shortest path method
(e.g., the geodesic distance), the diffusion distance D may
take into account all of, or nearly all of, the evidence relating
7,10 7, and therefore may be more robust to noise.

The Eigen decomposition of the transition matrix P is
shown below. Each row of matrix {¢,(z)} corresponds to a
right eigenvector of the transition matrix P. All the eigenvec-
tors are orthonormal to each other, and the eigenvectors form
a basis on the vector space, where the projection (e.g., coor-
dinate) of a feature z; on the eigenvector ¢, is ¢,(z,). Hence, the
i column of matrix {q)l.(zj)} is the projection of the data point
z;. Due to the decay of eigenvalues, d eigenvectors corre-
sponding to the d largest eigenvalues can be selected to con-
struct a lower-dimensional vector space that captures most
information in the original higher-dimensional vector space.

e1(z1) e1(z2) ... ©1(zm)
9@) @) @z [ o[ @f
: 5 : X ]
T eaz) @alz2) @alzm) :
; o 0 Ao |
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Also, after calculating the eigenvalues and eigenvectors of
the transition matrix P, the nodes can be embedded into a
d-dimensional vector space that was created by choosing the
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first d eigenvectors and eigenvalues. In that space, the diffu-
sion distance D is approximated by, or is equal to, the Euclid-
ean distance. The diffusion distance D in the d-dimensional
vector space can be approximated according to

d+1
(DO )1 = Y (A0 (es(@) - osle )

=2

Additionally, devices, systems, and methods for mapping
the MV Ws to the vector space are further described in U.S.
patent application Ser. No. 13/829,338 by Yang Yang et al.,
filed on Mar. 14, 2013, which is hereby incorporated by
reference in its entirety.

Finally, in block 240, high-level visual words (also referred
to herein as “HVWS5s”) are generated based on the MV Ws in
the vector space. For example, in some embodiments closely
related MV Ws, which are located more closely to each other
in the vector space, are further grouped into K HVWs. Given
a new mid-level feature ', in the vector space, the HVW may
calculated according to equation (4) in a soft assignment
manner:

Hy(F)=max{0n(z)-z,}, Q)

where z,=||[F',—~c®)||,, ¢ is the cluster centers, and pi(z) is the
mean of the elements of z (e.g., the mean of 7, 7,, . . . ). This
function outputs zero for any HVW H, where the distance to
the centroid ¢ is above average.

FIG. 3 illustrates example embodiments of mid-level
visual words in the low-level feature space (e.g., the native
space of the low-level features). A first set of MV Ws 307 A are
shown in a first low-level feature space 311A and a second set
of MV Ws 307B are shown in a second low-level feature space
311B. The MV Ws are formed from groups (e.g., clusters) of
low-level features in the low-level feature spaces 311A-B.
Because the low-level feature spaces 311A-B includes only
dimensions based on the visual appearance of the features
(e.g., 128 SIFT dimensions), the MV Ws 307A-B are based
only on the visual appearances of the low-level features.

FIG. 4A illustrates an example embodiment of relation-
ships among MV Ws and labels. The MV Ws are associated
with various images. For example, if one or more low-level
features that map to a MVW are detected in an image, then the
MVW may be associated with the image. Thus, if a low-level
feature extracted from image B maps to MVW 2, then MVW
2 is considered to be associated with image B.

Also, the images are also associated with various labels
405A-D, for example tags that have been assigned to an
image by a user. Additionally, if an image is associated with a
label, then an MVW associated with the image is also asso-
ciated with the label. A table or matrix can be generated that
contains information that describes the relationships of the
MVWs and labels. FIG. 4B illustrates an example embodi-
ment of a co-occurrence matrix of mid-level visual words and
labels. The matrix in FIG. 4B shows the count of the appear-
ances of each MVW with each label in FIG. 4A. For example,
MVW 1 co-occurs with Label 2 one time (via image E).
MVW 4 co-occurs with label 1 two times and co-occurs with
label 3 three times.

FIG. 5 illustrates an example embodiment of the mapping
of relationships from a graph 545 to a vector space 551. The
graph 545 shows the edge values between the nodes V1-V6.
In this example, a value of 2 is selected for the number of
transition steps t. The entries in P represent the probability
of' going from i to j int transition steps. A first set of paths 546
shows the three paths from V5 to V2 at t=2. A second set of
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paths 547 shows the one path from V3 to V6 att=2. The nodes
(e.g., MVWs) are mapped to a vector space 551 based on their
relationships. In the vector space 551, nodes V2 and V5 are
closer because of their stronger relationship in the graph 545.
Also, in the vector space 551, nodes V3 and V6 are further
apart because of their weaker relationship in the graph 545.
Therefore, the Euclidean distances between the nodes in the
vector space 551 indicates the relationships between the
nodes in the graph 545.

FIG. 6 illustrates an example embodiment of a method for
generating high-level visual words. The flow starts in block
600, where low-level features are extracted from images. For
example, some embodiments extract low-level features X
(e.g., raw features X). Next, in block 610, MV Ws are gener-
ated based on the low-level features X. For example, low-
level features X may be quantized into MVWs F with size
N,,..; using k-means clustering. The flow then moves to block
620, where inter-MV W relationships (i.e., MVW-MVW rela-
tionships) are generated based on the MVWs and on labels
associated with the MVWs (e.g., labels associated with the
MVWs via the images). For example, some embodiments
generate a graph G and a similarity matrix S using equations
(1), (2), and (3).

Next, in block 630, a Markov transition matrix P is gener-
ated based on the inter-MV W relationships. For example, the
similarity matrix S may be normalized such that its rows each
add up to 1. The flow then proceeds to block 640, where a
Markov transition matrix P® with t sumber of transition steps
(also referred to herein as “a Markov transition matrix P®
with t transition steps”) is generated. The flow then moves to
block 650, where eigenvalues A and eigenvectors ¢ are gen-
erated based on the Markov transition matrix P®. Next, in
block 660, the MV Ws are mapped to a vector space based on
the eigenvalues A, the eigenvectors ¢, and the Markov transi-
tion matrix P with t transition steps. For example, the
MVWs and their relationships may be embedded in the vector
space.

The flow then proceeds to block 670, where HVWs are
generated in the vector space based on the positions of the
MVWs in the vector space. For example, the MVWs may be
clustered in a d-dimensional vector space into K groups using
k-means clustering, and the cluster centers ¢ may be saved.
Then, given a mid-level feature F'; in the vector space, the
corresponding HVW may be calculated using equation (4),
for example. Some embodiments use soft assignment to
assign MV Ws in new image to the created HVWs.

For example, one embodiment of a method was tested on a
subset of the ImageNet dataset. The subset had 100 object
categories, each having around 1000 examples for training
and 100 for testing. The training set was used to learn the
HVW centers and the corresponding classifiers.

For the color-SIFT features, SIFT interesting-point detec-
tion was used, and the features were extracted around the
interesting point based on three channels. After getting the
color-SIFT features, the color-SIFT MVWs were generated
using k-means clustering with N, ~3000. Next, the MVW-
label similarity matrix S was constructed. The similarity
matrix S was constructed using the Gaussian kernel function
with sigma equals 2. The Markov random walk was per-
formed using 4 (t=4) transition steps to construct a forward-
probability matrix P®. Through Eigen-decomposition and
choosing eight hundred dimensions (d=800), the color-SIFT
MVWs and images were embedded into an 800-dimensional
vector space. In the vector space, the MV Ws were clustered
into 1000 (K=1000) groups, which correspond to the HVWs.
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Finally, each image was represented using the soft assigned
HVWs and one or more respective corresponding classifiers
were trained on the HVWs.

The embodiment of the method was compared with three
other methods: the traditional bag-of-word method (BOW), a
method that uses PMI, and a method that uses hard-assigned
HVWs. The BOW method also uses color-SIFT features as
low-level features and uses k-means to learn a codebook with
size of 1000. A k-nearest-neighbor classifier was used with a
cosine kernel for all methods. Table 1 shows the error rate for
each method.

TABLE 1
Recognition error results.
Example Example

BOW PMI embodiment embodiment

Method Method  (hard assignment) (soft assignment)
First 5 0.47 0.455 0.411 0.389
categories
100 0.79 0.772 0.753 0.731
categories

FIG. 7 illustrates an example embodiment of the flow of

operations in a feature fusion system. The system includes
one or more computing devices (e.g., desktops, laptops, tab-
lets, servers, phones, PDAs), although only some of the com-
ponents of the computing devices are shown in FIG. 7 in order
to explain the operations. The system includes a feature-
extraction module 710, which receives one or more images
701 and extracts low-level features 703 from the one or more
images 701.

The low-level features 703 are input to a visual-word-
generation module 730. The visual-word-generation module
730 generates MVWs 707 based on the low-level features
703, for example by clustering the low-level features 703 in a
low-level-features space. Also, in some embodiments the
images 701 are input to an image-categorization module 720,
which determines the respective labels 705 (e.g., categories,
tags, semantic labels) that are associated with the images 701.

The mid-level visual words 707, and in some embodi-
ments, the images 701 or the labels 705, are input to a visual-
word relationship-modeling module 740, which generates a
model 745 (e.g., the graph shown in FIG. 7) that defines
inter-visual-word relationships and visual-word-label rela-
tionships. The computing device that implements the method
does not need to “draw” a visual graph in every embodiment.
For example, some embodiments may define the nodes and
the edges without “drawing™ a visual graph.

The representation 745 is then obtained by the relation-
ship-mapping module 750. The relationship-mapping mod-
ule 750 also obtains sets of importance weights 749. A set of
importance weights, for example o/, defines respective
weights for all of the objects (e.g., MV Ws, labels, images) in
the representation 745. For example, o, * defines a weight for
object 1 in a first set of importance weights, a.,' defines a
weight for object 2 in the first set of importance weights, o,
defines a weight for object 1 in a second set of importance
weights, o, defines a weight for object 2 in the second set of
importance weights, etc. Based on the representation 745 and
the sets of importance weights 749, the relationship-mapping
module maps the MVWs 707 (and, in some embodiments,
other objects (e.g., labels, images)) to vector spaces 751A-C,
for example to a respective vector space 751 for each of the
sets of importance weights 749. Thus, a first vector space
751A is based on a first set of importance weights o', etc.
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In the vector spaces 751, groups of MVWs 107 may be
fused to generate HVWs 709 (not all of the HVWs are labeled
in FIG. 7). The HVWs 709 may not extend across vector
spaces 751. The HVWs in the different vector spaces allow
the HVWs to closely relate two nodes A and B to a third node
C without closely relating the two nodes A and B to each
other. When a Markov random walk is performed on the
graph and the diffusion distance is based on the random walk,
more nodes (e.g., features, MVWs, labels, images) can be
considered to be neighbors when a larger diffusion distance is
used (e.g., a larger transition step t). For example, if ‘cat ears’
always co-occurs with ‘cat noses’, and ‘cat noses’ always
co-occurs with ‘cat eyes’, then ‘cat ears’ must also often
co-occur with ‘cat eyes.” Some embodiments work fairly well
when the number of random-walk transition steps t is small
(around 2-5), but when the number of transition steps t is
increased further, the recognition accuracy may quickly
decrease. The reason for this decrease is that when the number
of transition steps t is large, the similarity relationships
between the nodes are further diffusing along a random path,
and more and more nodes on the path are considered to be
similar to the starting node. Hence, more nodes will be
grouped into one cluster as an HVW. However, when the
co-occurrence similarities between nodes are non-metric, the
diffusion of nodes may not be meaningful. For example,
though the word ‘tie’ always co-occurs with the word ‘cloth’
and the word ‘rope’, ‘rope’ and ‘cloth’ may not always co-
occur together. In object recognition, though the visual word
‘green grass’ may often co-occur with ‘cat eyes’ and ‘tires’,
‘cat eyes’ and ‘tires’ do not usually belong to the same topic.
However, by generating different vector spaces 751, different
HVWs 709 may be generated that can model non-metric
similarities between features and MVWs.

FIG. 8 illustrates an example embodiment of a method for
generating high-level visual words. The flow starts in block
800, where low-level features are extracted from images.
Next, in block 810, MVWs are generated based on the low-
level features. The flow then moves to block 820, where
inter-MVW relationships are generated based on the MVWs
and maybe on the images or labels that are associated with the
images, for example according to equations (1), (2), and (3).
Also, a transition matrix P can be generated by dividing the
row sums of the similarity matrix S:

s(i, j) (5)

s )’
4

pli, )=

The transition matrix P includes joint probabilities that
define the probabilities between all of the pairs of nodes based
on their similarities.

Next, in block 830 different sets of importance scores are
assigned to the MV Ws. In each set of importance scores with
index m (one for each of M vector spaces), a point (e.g.,
MVW, image, label) with index i has an importance weight
o, that measures the importance of point i in set m and a
corresponding vector space. Because of the probabilistic
interpretation of some embodiments of the model, X ,,_,* o,
may be constrained to be 1. The importance score o,” may be
more conveniently represented using 0,”, whereby the two
are related by the following relationship which enforces the
sum-to-one constraint on the importance weights ., over the
M vector spaces:
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The flow then proceeds to block 840, where the MV Ws are
mapped to vector spaces based on the inter-MVW relation-
ships and the importance scores. The MV Ws are mapped to
multiple vector spaces (e.g., two-dimensional vector spaces),
for example one vector space for each set of importance
scores, in such a way that the pairwise similarities p,; are
modeled as well as possible in the vector spaces. Within each
vector space, the similarity between two points can be calcu-
lated through the Euclidean distance between the two points;
between the vector spaces, the points are independent and
have no similarity measurement. Multiple vector spaces are
used, for example, when the similarities of MV Ws are usually
non-metric and a single vector space cannot model multiple
metrics.

Some embodiments use a Student’s t-distribution (“t-
SNE”), and a vector space constructed by t-SNE is designated
byY={yi,...,yn}. To evaluate the pairwise similarities of the
points y, and y, in lower-dimensional vector spaces, q,; desig-
nates the low-dimensional counterpart of p,. The error
between the input similarities p,; and their counterparts g, in
the low-dimensional vector space may be measured accord-
ing to the KL-divergence between the distributions P and Q.
A cost function C (Y) may be defined according to

Pi
qij.

c=KLPIR = pylog @

i

Due to the asymmetric nature of the KI.-divergence, the cost
function C(Y) focuses on appropriately modeling the large
pairwise similarities p,, between the input data. This forces
similar input data to be closer together in the low-dimensional
vector space in order to minimize the cost function C(Y). In
embodiments of the cost function C(Y) that are generally
non-convex, the minimization of C (Y) may be performed
using a gradient descent method.

The joint probabilities q,; that measure the similarities
between the points y, and y, in a single low-dimensional (e.g.,
two-dimensional) map may be defined according to equation
(8) (below):

(L + Iy =yl ®)

ST el

ko Fk

One property of some embodiments of t-SNE is that, in the
low-dimensional vector space, the similarity between two
points is proportional to a Student’s t-distribution with a
single degree of freedom, instead of being proportional to a
Gaussian density. By using a heavy-tailed distribution to
measure similarities in the low-dimensional vector space,
t-SNE allows points that are only slightly similar to be visu-
alized much further apart in the vector space.

Furthermore, a single vector space usually cannot model
the non-metric similarities; therefore multiple vector spaces
may be needed to capture the different metrics between
MVWs. The multiple vector spaces construct a collection of
M vector spaces, each of which contains N points (one for
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each ofthe N mid-level visual words) and assigns importance
weights o, (at least some of which may be different from
other vector spaces) to the N points. Also, in some embodi-
ments, points in the vector space represent other objects than
MVWs (e.g., images, labels). Mathematically, q,; in the mul-
tiple-vector-space t-SNE model may be defined according to

S arar i+l -y ©

S ST apa Lo I~

k Fe om

The multiple-map t-SNE may use the cost function C(Y) of
equation (7). To solve equation (7), gradient descent may be
used to optimize it with respect to the NxM low-dimensional
map points y,” and with respect to the NxM importance
weights o,”". In some embodiments, the dimensionality of the
vector space points is equal to 2, and N is the number of
mid-level features.

The flow then proceeds to block 850, where HVWs are
generated in the vector spaces based on their respective
MVW positions. For example, the MV Ws may be embedded
into M vector spaces with respective importance scores, the
MV Ws in each vector space may be clustered, and the clusters
with the higher importance scores may be selected for HVWs.

FIG. 9 illustrates an example embodiment of a set of vector
spaces and importance weights. Sets 1 to M of importance
weights o,” are used to generate respective vector spaces 951.
The vector spaces 951 each include mid-level visual words
V1-V12, but assign one or more of the mid-level visual words
V1-V12 importance weights that differ from the importance
weights that the other sets assign the same visual words. For
example, MVW V1 may be assigned an importance weight in
a first vector space 951" that is different from the importance
weight of MVW V1 in a third vector space 951°. HVWs are
generated in the vector spaces 951 based on the MVWs and
the respective importance weights of the MVWs. Also,
HVWs may each be assigned a respective importance score.
The HVWs that have higher importance scores (e.g., scores
that exceed a threshold, a certain highest percentile of scores)
may be selected for a vocabulary 919.

FIG. 10 illustrates an example embodiment of a method for
generating high-level visual words. The flow starts in block
1000, where low-level features are extracted from images.
For example, some embodiments extract low-level features
X. The flow then moves to block 1005, where MVWs are
generated based on the low-level features. For example, some
embodiments quantize low-level features X into mid-level
features F with size N using k-means clustering. Next, in
block 1010, inter-MVW relationships are generated based on
the MVWs and maybe on the images or labels that are asso-
ciated with the images. For example, some embodiments
generate a similarity matrix S according to equations (1), (2),
and (3). Following, in block 1015, a transition matrix P is
generated based on the inter-MVW relationships. For
example, some embodiments normalize the similarity matrix
S such that its rows add up to 1 according to equation (5). The
flow then moves to block 1020, where M sets of importance
weights {o,', &%, . . ., o,*} are generated. Next, in block
1025, a counter m is initialized to 1.

The flow proceeds to block 1030, where it is determined if
all sets of importance weights {o,', o2, . .., o} have been
considered, which is yes if m=M. If not (block 1030=no0), then
flow proceeds to block 1040, where the MV Ws are mapped to
vector space m based on the transition matrix P and the

10

15

20

25

30

35

40

45

50

55

60

65

12

respective importance weights am. For example, some
embodiments calculate the low-dimensional vector-space
coordinates for each MVW by optimizing equation (7) using
gradient descent. Also, some embodiments perform the
operations in blocks 640-660 in FIG. 6. Flow then moves to
block 1045, where m is incremented (m=m+1), and then the
flow returns to block 1030.

If in block 1030 all sets of importance weights {a,’,
a2, ..., o™} have been considered (block 1030=yes), then
flow proceeds to block 1050, where HVWs are generated in
each of the M vector spaces based on the positions of the
MV Ws in the vector spaces. For example, some embodiments
cluster the MVWs in each low-dimensional vector space
separately from the other vector spaces, choose the K clusters
with high importance scores from all of the vector spaces as
HVWs, and save the grouping indexes for mapping from
MVWs to the K HVWs. Additionally, some embodiments
save the importance scores for the K HVWs, possibly for later
use as a feature-significance measurement.

One embodiment was tested on a subset of the ImageNet
dataset. The subset had 100 object labels and each label had
approximately 1000 examples for training and 100 examples
for testing. The training set was used to learn the HVWs and
their corresponding classifiers. For the color-SIFT features,
the test used SIFT interesting-point detection and extracted
the features around the interesting points based on three chan-
nels. Next, the MV Ws were generated using k-means clus-
tering with K=3000. Then a similarity matrix S and a transi-
tion matrix P were generated according to inter-MVW
relationships. Next, the coordinates of each MVW in each
vector space were calculated. The total number of vector
spaces, M, was 50. Also, the MV Ws in each vector space were
clustered to form HVWs and, for each vector space, the top 20
HVWs were selected according to their importance scores.
Thus, the total number of HVWs was 1000. Finally, each
image was represented using the HVWs, and classifiers were
trained on the HVWs.

The results were compared with the results of three other
methods: the traditional bag-of-word method (BOW), a PMI
method, and a statistical diffusion mapping method that used
soft assignment. The BOW method also used color-SIFT for
the low-level features and used k-means to learn a codebook
with size of 1000. A k-nearest-neighbors classifier was used
as the classifier with cosine similarity for all methods. The
error rates are shown in table 1.

TABLE 1
Recognition error results.
BOW PMI SDM with Tested
method Method soft assignment embodiment

First 5 0.47 0.455 0.389 0.392
categories
100 0.79 0.772 0.731 0.716
categories

FIG. 11 illustrates an example embodiment of a system for
generating high-level visual words. The system includes a
feature-fusion device 1110 and an image-storage device
1120. The feature-fusion device 1110 includes one or more
processors (CPU) 1111, I/O interfaces 1112, and storage/
memory 1113. The CPU 1111 includes one or more central
processing units (e.g., microprocessors, single core proces-
sors, multi-core processors) and is configured to read and
perform computer-executable instructions, such as instruc-
tions stored in the modules. The computer-executable instruc-
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tions may include those for the performance of the methods
described herein. The I/O interfaces 1112 provide communi-
cation interfaces to input and output devices, which may
include a keyboard, a display, a mouse, a printing device, a
touch screen, a light pen, an optical storage device, a scanner,
a microphone, a camera, a drive, and a network (either wired
or wireless).

The storage/memory 1113 includes one or more computer
readable or writable media, and may include, for example, a
magnetic disk (e.g., a floppy disk, a hard disk), an optical disc
(e.g., a CD, a DVD, a Blu-ray), a magneto-optical disk, a
magnetic tape, semiconductor memory (e.g., a non-volatile
memory card, flash memory, a solid state drive, SRAM,
DRAM), an EPROM, an EEPROM, etc. The storage/memory
1113 is configured to store computer-readable information or
computer-executable instructions. The components of the
feature-fusion device 1110 communicate via a bus.

The feature fusion device 1110 also includes a graph-
generation module 1114, a mapping module 1115, and a
feature-fusion module 1116. In some embodiments, the fea-
ture fusion device 1110 includes additional or fewer modules,
the modules are combined into fewer modules, or the mod-
ules are divided into more modules. The graph-generation
module 1114 includes instructions that, when executed by the
feature-fusion device 1110, cause the feature-fusion device
1110 to receive one or more images (e.g., from the image-
storage device 1120), extract low-level features from the one
or more images, generate MVWs based on the low-level
features, and generate a graph or other relationship represen-
tation (e.g., a similarity matrix) based on one or more of the
following: the MVWs, the images, any labels, and other
objects. The mapping module 1115 includes instructions that,
when executed by the feature-fusion device 1110, cause the
feature-fusion device 1110 to map the MVWs to multiple
vector spaces (e.g., distinct vector spaces) based on a rela-
tionship representation (e.g., graph) and on sets of MVW
importance weights. The feature-fusion module 1116
includes instructions that, when executed by the feature-fu-
sion device 1110, cause the feature-fusion device 1110 to
generate HVWs in the vector spaces, train one or more
respective classifiers for the HVWs, and assign importance
scores to the HVWs. The feature-fusion device 1110 stores
generated MV Ws, importance weights, relationship repre-
sentations, HVWs, and importance scores in the storage/
memory 1113.

The image-storage device 1120 includes a CPU 1122, stor-
age/memory 1123, 1/O interfaces 1124, and image storage
1121. The image storage 1121 includes one or more com-
puter-readable media that are configured to store images or
image features. The image-storage device 1120 and the fea-
ture-fusion device 1110 communicate via a network 1130.

FIG. 12A illustrates an example embodiment a system for
generating high-level visual words. The system includes an
image-storage device 1220, a relationship-modeling device
1210, and a mapping device 1240, which communicate via a
network 1230. The image-storage device 1220 includes one
or more CPUs 1222, I/O interfaces 1224, storage/memory
1223, and image storage 1221. The relationship-modeling
device 1210 includes one or more CPUs 1211, /O interfaces
1212, storage/memory 1214, and a graph-generation module
1213. The mapping device includes one or more CPUs 1241,
1/0O interfaces 1242, storage/memory 1243, and a mapping
module 1244, which also includes the instructions in the
feature fusion module 1116 of FIG. 11.

FIG. 12B illustrates an example embodiment a system for
generating high-level visual words. The system includes a
feature-fusion device 1250. The feature-fusion device 1250
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includes one or more CPUs 1251, I/O interfaces 1252, stor-
age/memory 1253, an image storage module 1254, a feature-
extraction module 1255, a feature-quantization module 1256,
a mapping module 1257, and a relationship-quantification
module 1258. The feature-extraction module 1255 includes
instructions for extracting low-level features from images.
The quantization module 1256 includes instructions for quan-
tizing low-level features to generate MV Ws. The relation-
ship-quantification module 1258 includes instructions for
quantifying the relationships of MV Ws in the vector spaces
and for generating and selecting HVWs in the vector space.

The above described devices, systems, and methods can be
implemented by supplying one or more computer-readable
media having stored thereon computer-executable instruc-
tions for realizing the above described operations to one or
more computing devices that are configured to read the com-
puter-executable instructions and execute them. In this case,
the systems or devices perform the operations of the above-
described embodiments when executing the computer-ex-
ecutable instructions. Also, an operating system on the one or
more systems or devices may implement the operations of the
above described embodiments. Thus, the computer-execut-
able instructions and/or the one or more computer-readable
media storing the computer-executable instructions thereon
constitute an embodiment.

Any applicable computer-readable medium (e.g., a mag-
netic disk (including a floppy disk, a hard disk), an optical
disc (including a CD, a DVD, a Blu-ray disc), a magneto-
optical disk, a magnetic tape, and a solid state memory (in-
cluding flash memory, DRAM, SRAM, a solid state drive))
can be employed as a computer-readable medium for the
computer-executable instructions. The computer-executable
instructions may be written to a computer-readable medium
provided on a function-extension board inserted into the
device or on a function-extension unit connected to the
device, and a CPU provided on the function-extension board
or unit may implement the operations of the above-described
embodiments.

The scope of the claims is not limited to the above-de-
scribed embodiments and includes various modifications and
equivalent arrangements. Also, as used herein, the conjunc-
tion “or” generally refers to an inclusive “or,” though “or”
may refer to an exclusive “or” if expressly indicated or if the
context indicates that the “or” must be an exclusive “or.”

What is claimed is:

1. A method comprising: generating inter-visual-word
relationships between a plurality of visual words based on
visual word-label relationships, wherein the visual word-la-
bel relationships are based on co-occurrences of respective
visual words and labels in one or more images, and wherein
the inter-visual word relationships are based on scores
between the visual word-label relationships of respective
visual words; mapping the visual words to a vector space
based on the inter-visual-word relationships; and generating
high-level visual words in the vector space.

2. The method of claim 1, wherein respective distances
between the visual words in the vector space indicate the
inter-visual-word relationships.

3. The method of claim 1, wherein the inter-visual-word
relationships are further based on visual word-image relation-
ships and label-image relationships.

4. The method of claim 3, wherein the label-image rela-
tionships are one-to-one relationships.

5. The method of claim 1, wherein the scores between the
visual word-label relationships of respective visual words are
based on respective averages of the KI. divergence between
each pair of mid-level features according to

S, Fyy=S(F, Fy=A[KL(P P +KL(P, 1P,
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where
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4

where p(i, q) denotes the joint probability that visual word F,
appears in label q, and where (i, q) indicates the frequency
with which visual word F, appears in label q.

6. The method of claim 1, further comprising generating
clusters of visual words in the vector space based on respec-
tive positions of the visual words in the vector space, wherein
the high-level visual words are generated based on the clus-
ters of visual words.

7. The method of claim 1, wherein the vector space is
generated via a diffusion map.

8. One or more non-transitory computer-readable media
storing instructions that, when executed by one or more com-
puting devices, cause the one or more computing devices to
perform operations comprising: generating inter-visual-word
relationships between a plurality of visual words based on
visual word-label relationships, wherein the visual word-la-
bel relationships are based on co-occurrences of respective
visual words and labels in one or more images, and wherein
the inter-visual word relationships are based on scores
between the visual word-label relationships of respective
visual words; mapping the visual words to a vector space
based on the inter-visual-word relationships; and generating
high-level visual words in the vector space based on respec-
tive positions of the visual words in the vector space.
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9. The one or more computer-readable media of claim 8,
wherein the inter-visual-word relationships are represented
as distances between the respective visual words in the vector
space.

10. The one or more computer-readable media of claim 8,
wherein mapping the visual words to the vector space
includes generating a weight matrix.

11. The one or more computer-readable media of claim 8,
wherein the high-level visual words encode features via soft
cluster assignments.

12. A method comprising: generating inter-visual-word
relationships between a plurality of visual words; generating
sets of importance weights for the visual words, wherein a set
of importance weights includes a respective weight for each
of'the visual words; mapping the visual words to one or more
vector spaces based on the inter-visual word relationships and
on the sets of importance weights, wherein each vector space
corresponds to a respective one of the sets of importance
weights; generating high-level visual words in the plurality of
vector spaces; assigning a respective importance score to
each of the high-level visual words; and selecting high-level
visual words based on their respective importance scores.

13. A system comprising: one or more computer-readable
media; and one or more processors that are coupled to the one
or more computer-readable media and that are configured to
cause the system to generate inter-visual-word relationships
between a plurality of visual words based on visual word-
label relationships, wherein the visual word-label relation-
ships are based on co-occurrences of respective visual words
and labels in one or more images, and wherein the inter-visual
word relationships are based on scores between the visual
word-label relationships of respective visual words, map the
visual words to a vector space based on the inter-visual-word
relationships, and generate high-level visual words in the
vector space.



